Mathematics: analysis and approaches			
Higher Level	Name		
Paper 1			
Date:			
2 hours			

Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [110 marks].

exam: 12 pages

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer **all** questions in the boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 6]

There are seven different plants being studied in a biology class. For each plant, x is the diameter of the stem in centimetres and y is the average leaf length in centimetres. Let r be the Pearson's product-moment correlation coefficient.

- (a) Write down the possible minimum and maximum values of r. [2]
- (b) Copy and complete the following table by noting which scatter diagram A, B, C, D or E corresponds to each value of *r*. [4]

correlation coefficient r	scatter diagram	
-1		
-0.8		
0		
0.5		

2. [Maximum mark: 5]

Let A and B be events such that P(A) = 0.3, P(B) = 0.6 and $P(A \cup B) = 0.7$. Find $P(A \mid B)$.

3. [Maximum mark: 5]

Prove that the sum of the squares of any two consecutive integers is odd.

4. [Maximum mark: 7]

Let $g'(x) = \frac{2x}{\sqrt{3x^2 + 1}}$. Given that g(1) = 2, find g(x).

5. [Maximum mark: 5]

The diagram below shows the graph of y = f(x). The graph has a horizontal asymptote at y = 0 (x-axis) and has a minimum at (-1, -2) and a maximum at (1, 2).

On the set of axes below, sketch the graph of y = f(|x|) + 1. Clearly show any asymptotes with their equations and the coordinates of any maxima or minima.

	viatrierratics. Arialysis & Approacties HL	,	HLPI WOCK C / 2022V.	1/10
6.	[Maximum mark: 6]			
	A geometric series has a common	ratio of 2^x .		
	(a) Find the values of x for which t	the sum to infinity of the se	eries exists.	[2]
	(b) If the first term of the series is	14 and the sum to infinity i	is 16, find the value of x.	[4]
Г				

7. [Maximum mark: 6]

Consider the curve with the equation $x^2 - xy + y^2 = 6$.

- (a) State the coordinates of all the points where the curve intersects the *x*-axis. [2]
- (b) Find the equation for each of the two vertical lines that are tangent to the curve. [4]

8. [Maximum mark: 8]

The equation $4x^2 + 3x + 2 = 0$ has roots α and β .

- (a) Write down the values of $\alpha + \beta$ and $\alpha\beta$. [2]
- (b) Hence, show that $\alpha^2 + \beta^2 = -\frac{7}{16}$. [2]
- (c) Hence, find an equation with integer coefficients that has roots $2\alpha \beta$ and $2\beta \alpha$. [4]

		 	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •	 		• • • • • • • • • • • • • • • • • • • •
		 		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
1				

9. [Maximum mark: 8]

Using mathematical induction, prove that n(n+1)(n+2) is divisible by 6 for all $n, n \in \mathbb{Z}^+$.

Do **not** write solutions on this page.

Section B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

10. [Maximum mark: 16]

The function f is defined as $f(x) = \frac{x+1}{\ln(x+1)}$, x > 0.

- (a) (i) Show that $f'(x) = \frac{\ln(x+1)-1}{\left(\ln(x+1)\right)^2}$.
 - (ii) Find f''(x), writing it as a single rational expression [6]
- (b) (i) Find the value of x satisfying the equation f'(x) = 0.
 - (ii) Show that this value gives a minimum value for f(x), and determine the minimum value of the function. [7]
- (c) Find the x-coordinate of the one point of inflexion on the graph of f. [3]
- **11.** [Maximum mark: 20]

The points A, B and C have position vectors i+2j+k, 3i+j+2k and -i+j+2k respectively and lie in plane \prod .

- (a) Find: (i) the area of triangle ABC;
 - (ii) the shortest distance from C to the line AB.
 - (iii) a Cartesian equation of plane Π . [14]

The line *L* passes through the origin and is normal to plane \prod and *L* intersects \prod at point D.

(b) Find: (i) the coordinates of point D;

(ii) the distance of Π from the origin. [6]

Do **not** write solutions on this page.

12. [Maximum mark: 18]

- (a) Find the expansion of $(\cos \theta + i \sin \theta)^4$ and write it in the form a + bi, where a and b are in terms of $\sin \theta$ and $\cos \theta$. [4]
- (b) Hence, using De Moivre's theorem, show that $\cos 4\theta = \cos^4 \theta 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$. [3]
- (c) Hence, show that $\tan 4\theta = \frac{4\tan\theta 4\tan^3\theta}{1 6\tan^2\theta + \tan^4\theta}$. [5]
- (d) Hence, find the four solutions to $x^4 + 4x^3 6x^2 4x + 1 = 0$. [6]